Multi-Agent Logistics Optimization

This is a simplified version of problem faced by logistics company.

Problem: Given there are # dispatchers and # of locations for delivery, optimize the paths for each dispatcher.

\begin{aligned} & \min & & \sum_{i,j,k} W_{ij}X_{ijk} \\ & \text{where} & & W := \text{Euclidean distance matrix} \\ &&& X := \text{Adjacency matrix} \\ & \text{s.t.} & & i, j \in \{1, \dots, \#Locations \} \\ &&& k \in \{1, \dots, \#Dispatchers \} \\ \end{aligned}


Linear Programming. Computing adjacency matrices for all dispatcher in a single run is very expensive and slow. One could adopt divide and conquer strategy for scalability. For example, during the first iteration, set number of dispatcher to 1 to get overall shortest path, then cut it into 2 and rerun the optimizer for each of the parts. More constraints can be introduced to set the minimum and maximum work to be carried out by each of the dispatcher.


Leave a Reply